Determination of Potential Agricultural Conservation Savings (Low End of Range) Colorado River

Input	Data	from	DWI	₹
-------	------	------	-----	---

Applied Water	2,812	(1,000 af)
Depletion	2,742	(1,000 af)
ET of Applied Water	2,177	(1,000 af)

Assumptions for Calculations

1. Ave. Leaching Fraction =	14%	
2. % lost to Channel Evap/ET ³ =	4%	

3. Assumed allocation of conservation betw District and On-farm district portion = 1/3 of savings * "adjustment factor"

canal lining:	
tailwater:	
flexibility:	
meas/price:	

(adjustment factor based on region variation in water districts)

5 (points for this region's districts

1.25 = adjustment factor

42% = district portion

58% = on-farm portion

of 4 points for average)

Calculations from Input Data

(1,000 af)

Total Existing Losses

635 (Diff betw. Applied Water and ETAW)

Total Irrecoverable losses Total Recoverable losses

565 (Diff betw. Depletion and ETAW) 70 (Diff betw. Applied Water and Depletion)

Ratio of Irrecoverable Loss

89% (Irrecov divided by total existing losses)

271 (Leach Fraction * ETAW * Irrec. Loss Ratio * Adj. Factor)

Portion lost to leaching Portion lost to Channel Evap/ET

112 (Applied Water * % lost to Channel Evap/ET)

Total Loss Conservation Potential

251 (Total Existing loss - portion to leaching - portion to channel evap/ET)

181 (Irrec loss - portion to leaching - portion lost to channel evap/ET)

Irrecoverable Portion Recoverable Portion

70 (Total Existing loss - Irrecoverable Loss Portion)

Incremental Distribution of Conservable Portion of Losses

_		Distrib. Factor	Applied Water Reduction ¹ (1,000 ac-ft)	Irrec. Loss Reduction ² (1,000 ac-ft)	Rec. Loss Reduction (1,000 ac-ft)
No Action Increment =	1st 40%	0.40	101	73	28
CALFED Increment =	next 30%	0.30	75	54	21
Remaining =	final 30%	0.30	75	54	21
			251	181	70

Summary of Savings:

Existing Applied Water Use =

2,812

Total Potential Reduction of Application

(1,000af)	Existing No Action		CALFED	Total
On-Farm		59	44	103
District		42	31	73
Total	635	101	75	176

Recovered Losses with Potential for Rerouting Flows

(1,000af)	Existing	No Action	CALFED	Total
On-Farm		16	12	28
District	-	12	9	21
Total	70	28	21	49

Potential for Recovering Currently Irrecoverable Losses

(1,000af)	Existing	Existing No Action CALFED		Total
On-Farm		42	32	74
District		30	23	53
Total	565	73	54	127

Notes:

- 1. Calculated as the distribution factor times the "conservable portion" of the total existing loss. The first 40% of savings potential occurs under No Action. The next 30% of saving potential is the CALFED increment. The final 30% is considered "non-conservable".
- 2. Calculated as the distribution factor times the "conservable portion" of irrecoverable loss. The first 40% of savings potential occurs under No Action. The next 30% of saving potential is the CALFED increment. The final 30% is considered "non-conservable".
- 3. Derived from comparing consumptive conveyance loss values from USBR Least-Cost CVP Yield Increase Plan, T.A #3 (Sept. 1995) to applied water values for the region. A range of 2 to 4% was used to account for uncertainty. This value accounts for consumption by bank and riparian vegetation and channel evaporation.

Determination of Potential Agricultural Conservation Savings (High End of Range) Colorado River

Input Data from DWR

Assumptions for Calculations

1. Ave. Leaching Fraction =

Applied Water	2,812	(1,000 af)
Depletion	2,742	(1,000 af)
ET of Applied Water	2,177	(1,000 af)

Total Irrecoverable losses Total Recoverable losses 2. % lost to Channel Evap/ET 3 = 2%

3. Assumed allocation of conservation betw District and On-farm district portion = 1/3 of savings * "adjustment factor"

> canal lining: tailwater: (adjustment factor flexibility: based on region variation in water districts) meas/price:

10%

5 (points for this region's districts

1.25 = adjustment factor

42% = district portion

58% = on-farm portion

of 4 points for average)

Calculations from Input Data

(1,000 af) **Total Existing Losses**

635 (Diff betw. Applied Water and ETAW)

565 (Diff betw. Depletion and ETAW) 70 (Diff betw. Applied Water and Depletion)

89% (Irrecov divided by total existing losses)

Ratio of Irrecoverable Loss 194 (Leach Fraction * ETAW * Irrec. Loss Ratio * Adj. Factor)

Portion lost to leaching

Portion lost to Channel Evap/ET 56 (Applied Water * % lost to Channel Evap/ET)

Total Loss Conservation Potential 385 (Total Existing loss - portion to leaching - portion to channel evap/ET)

> Irrecoverable Portion 315 (Irrec loss - portion to leaching - portion lost to channel evap/ET)

70 (Total Existing loss - Irrecoverable Loss Portion) Recoverable Portion

Incremental Distribution of Conservable Portion of Losses

		Distrib. Factor	Applied Water Reduction ¹ (1,000 ac-ft)	Irrec. Loss Reduction ² (1,000 ac-ft)	Rec. Loss Reduction (1,000 ac-ft)
No Action Increment =	1st 40%	0.40	154	126	28
CALFED Increment =	next 30%	0.30	116	95	21
Remaining =	final 30%	0.30	116	95	21
	•		385	315	70

Summary of Savings:

Existing Applied Water Use =

2,812

Total Potential Reduction of Application

(1,000af)	Existing	No Action	CALFED	Total
On-Farm		90	67	157
District		64	48	112
Total	635	154	116	270

Recovered	Losses	with	Potential	for	Rerouting Flows	

(1,000af)	Existing	No Action	CALFED	Total
On-Farm		16	12	28
District		12	. 9	21
Total	70	28	21	49

Potential for Recovering Currently Irrecoverable Losses

(1,000af)	Existing	No Action	CALFED	Total
On-Farm		74	55	129
District		52	39	91
Total	565	126	95	221

Notes:

- 1. Calculated as the distribution factor times the "conservable portion" of the total existing loss. The first 40% of savings potential occurs under No Action. The next 30% of saving potential is the CALFED increment. The final 30% is considered "non-conservable".
- 2. Calculated as the distribution factor times the "conservable portion" of irrecoverable loss. The first 40% of savings potential occurs under No Action. The next 30% of saving potential is the CALFED increment. The final 30% is considered "non-conservable".
- 3. Derived from comparing consumptive conveyance loss values from USBR Least-Cost CVP Yield Increase Plan, T.A #3 (Sept. 1995) to applied water values for the region. A range of 2 to 4% was used to account for uncertainty. This value accounts for consumption by bank and riparian vegetation and channel evaporation.